

intbitset

About

Provides an intbitset data object holding unordered sets of unsigned
integers with ultra fast set operations, implemented via bit vectors
and Python C extension to optimize speed and memory usage.

Emulates the Python built-in set class interface with some additional
specific methods such as its own fast dump and load marshalling
functions.

intbitset additionally support the pickle protocol [https://docs.python.org/3/library/pickle.html],
the iterator protocol [https://docs.python.org/3/library/stdtypes.html#iterator-types]
and can behave like a sequence type.

Usage

Example:

>>> from intbitset import intbitset
>>> x = intbitset([1,2,3])
>>> y = intbitset([3,4,5])
>>> x & y
intbitset([3])
>>> x | y
intbitset([1, 2, 3, 4, 5])

Notes

	Uses real bits to optimize memory usage, so may have issues with endianness

if you transport serialized bitsets between various machine architectures.

	Please note that no bigger than __maxelem__ elements can be added to an intbitset.

	On modern CPUs, vectorial instruction sets (such as MMX/SSE) are exploited

to further optimize speed.

Performance

Here is an example of performance gain with respect to traditional set of
positive integers (example of ipython session):

>>> ## preparation
>>> from intbitset import intbitset
>>> from random import sample
>>> sparse_population1 = sample(range(1000000), 10000)
>>> sparse_population2 = sample(range(1000000), 10000)
>>> dense_population1 = sample(range(1000000), 900000)
>>> dense_population2 = sample(range(1000000), 900000)
>>> sparse_set1 = set(sparse_population1)
>>> sparse_set2 = set(sparse_population2)
>>> sparse_intbitset1 = intbitset(sparse_population1)
>>> sparse_intbitset2 = intbitset(sparse_population2)
>>> dense_set1 = set(dense_population1)
>>> dense_set2 = set(dense_population2)
>>> dense_intbitset1 = intbitset(dense_population1)
>>> dense_intbitset2 = intbitset(dense_population2)
>>> sorted(sparse_population1)[5000:5002]
[500095, 500124]
>>> in_sparse = 500095
>>> not_in_sparse = 500096
>>> sorted(dense_population1)[500000:500002]
[555705, 555707]
>>> in_dense = 555705
>>> not_in_dense = 555706

For sparse sets, intbitset operations are typically 50 times faster than
set operations.

>>> ## Sparse sets operations
>>> %timeit sparse_set1 & sparse_set2
1000 loops, best of 3: 263 µs per loop
>>> %timeit sparse_intbitset1 & sparse_intbitset2 ## more than 20 times faster
100000 loops, best of 3: 11.6 µs per loop
>>> %timeit sparse_set1 | sparse_set2
1000 loops, best of 3: 891 µs per loop
>>> %timeit sparse_intbitset1 | sparse_intbitset2 ## almost 70 times faster
100000 loops, best of 3: 12.8 µs per loop
>>> %timeit sparse_set1 ^ sparse_set2
1000 loops, best of 3: 1.09 ms per loop
>>> %timeit sparse_intbitset1 ^ sparse_intbitset2 ## more than 80 times faster
100000 loops, best of 3: 12.9 µs per loop
>>> %timeit sparse_set1 - sparse_set2
1000 loops, best of 3: 739 µs per loop
>>> %timeit sparse_intbitset1 - sparse_intbitset2 ## almost 60 times faster
100000 loops, best of 3: 12.5 µs per loop

For dense sets, intbitset operations are typically 5000 times faster
than set operations:

>>> ## Dense sets operations
>>> %timeit dense_set1 & dense_set2
10 loops, best of 3: 62.1 ms per loop
>>> %timeit dense_intbitset1 & dense_intbitset2 ## more than 5000 times faster
100000 loops, best of 3: 12.3 µs per loop
>>> %timeit dense_set1 | dense_set2
10 loops, best of 3: 84.1 ms per loop
>>> %timeit dense_intbitset1 | dense_intbitset2 ## more than 6000 times faster
100000 loops, best of 3: 12.5 µs per loop
>>> %timeit dense_set1 ^ dense_set2
10 loops, best of 3: 64.2 ms per loop
>>> %timeit dense_intbitset1 ^ dense_intbitset2 ## more than 5000 times faster
100000 loops, best of 3: 12.6 µs per loop
>>> %timeit dense_set1 - dense_set2
10 loops, best of 3: 38.6 ms per loop
>>> timeit dense_intbitset1 - dense_intbitset2 ## more than 3000 times faster
100000 loops, best of 3: 12.8 µs per loop

Membership operations in intbitset behave in a comparable way than set objects, albeit with slightly better performance:

>>> ## Membership tests
>>> %timeit in_sparse in sparse_set1
10000000 loops, best of 3: 66.8 ns per loop
>>> %timeit in_sparse in sparse_intbitset1 ## 1.5 times faster
10000000 loops, best of 3: 42.8 ns per loop
>>> %timeit not_in_sparse in sparse_set1
10000000 loops, best of 3: 71.3 ns per loop
>>> %timeit not_in_sparse in sparse_intbitset1 ## 1.6 times faster
10000000 loops, best of 3: 44.7 ns per loop
>>> %timeit in_dense in dense_set1
10000000 loops, best of 3: 61.8 ns per loop
>>> %timeit in_dense in dense_intbitset1 ## 1.3 times faster
10000000 loops, best of 3: 45.3 ns per loop
>>> %timeit not_in_dense in dense_set1
10000000 loops, best of 3: 45.5 ns per loop
>>> %timeit not_in_dense in dense_intbitset1 ## similar speed
10000000 loops, best of 3: 41.4 ns per loop

Serialising can be up to 30 times faster:

>>> ## serialization speed
>>> ## note: internally intbitset compress using zlib so we are
>>> ## going to also compress the equivalent set
>>> from zlib import compress, decompress
>>> from marshal import dumps, loads
>>> %timeit loads(decompress(compress(dumps(sparse_set1))))
100 loops, best of 3: 6.55 ms per loop
>>> %timeit intbitset(sparse_intbitset1.fastdump()) ## 15% faster
100 loops, best of 3: 5.63 ms per loop
>>> %timeit loads(decompress(compress(dumps(dense_set1))))
1 loops, best of 3: 565 ms per loop
>>> %timeit intbitset(dense_intbitset1.fastdump()) ## almost 30 times faster for dense sets
10 loops, best of 3: 20.9 ms per loop

Serialising can lead to 20 times smaller footprint:

>>> len(compress(dumps(sparse_set1)))
29349
>>> len(sparse_intbitset1.fastdump()) ## almost half the space
16166
>>> len(compress(dumps(dense_set1)))
1363026
>>> len(dense_intbitset1.fastdump()) ## 5% of the space for dense set
70332

Reference

Defines an intbitset data object to hold unordered sets of unsigned
integers with ultra fast set operations, implemented via bit vectors
and Python C extension to optimize speed and memory usage.

Emulates the Python built-in set class interface with some additional
specific methods such as its own fast dump and load marshalling
functions. Uses real bits to optimize memory usage, so may have
issues with endianness if you transport serialized bitsets between
various machine architectures.

Please note that no bigger than __maxelem__ elements can be added to
an intbitset and, if CFG_INTBITSET_ENABLE_SANITY_CHECKS is disabled,
you will receive unpredictable results.

Note to developers: If you make modification to this file you
have to manually regenerate intbitset.c by running:

$ cython intbitset.pyx

and then commit generated intbitset.c.

	
class intbitset.intbitset

	Defines an intbitset data object to hold unordered sets of
unsigned integers with ultra fast set operations, implemented via
bit vectors and Python C extension to optimize speed and memory
usage.

Emulates the Python built-in set class interface with some
additional specific methods such as its own fast dump and load
marshalling functions. Uses real bits to optimize memory usage,
so may have issues with endianness if you transport serialized
bitsets between various machine architectures.

	The constructor accept the following parameters:

	rhs=0,
int preallocate=-1,
int trailing_bits=0,
bint sanity_checks=CFG_INTBITSET_ENABLE_SANITY_CHECKS,
int no_allocate=0:

where rhs can be:

	int/long for creating allocating empty intbitset that will hold at
least rhs elements, before being resized

	intbitset for cloning

	bytes for retrieving an intbitset that was dumped into a byte string

	array for retrieving an intbitset that was dumped into a string stored
in an array

	sequence made of integers for copying all the elements from the sequence.
If minsize is specified than it is initially allocated enough space to
hold up to minsize integers, otherwise the biggest element of the sequence
will be used.

	sequence made of tuples: then the first element of each tuple is
considered as an integer (as in the sequence made of integers).

The other arguments are:

	preallocate is a suggested initial upper bound on the numbers that
will be stored, by looking at rhs a sequence of number.

	trailing_bits is 1, then the set will contain “all” the positive integers

	no_allocate and sanity_checks are used internally and should never be set.

	
__and__

	Return the intersection of two intbitsets as a new set.
(i.e. all elements that are in both intbitsets.)

	
__cmp__

	

	
__contains__

	x.__contains__(y) <==> y in x

	
__deepcopy__()

	

	
__delitem__

	x.__delitem__(y) <==> del x[y]

	
__eq__

	x.__eq__(y) <==> x==y

	
__ge__

	x.__ge__(y) <==> x>=y

	
__getitem__

	x.__getitem__(y) <==> x[y]

	
__gt__

	x.__gt__(y) <==> x>y

	
__hash__

	

	
__iadd__

	x.__iadd__(y) <==> x+=y

	
__iand__

	Update a intbitset with the intersection of itself and another.

	
__ior__

	Update a intbitset with the union of itself and another.

	
__isub__

	Remove all elements of another set from this set.

	
__iter__

	

	
__ixor__

	Update an intbitset with the symmetric difference of itself and another.

	
__le__

	x.__le__(y) <==> x<=y

	
__len__

	

	
__lt__

	x.__lt__(y) <==> x<y

	
__ne__

	x.__ne__(y) <==> x!=y

	
__new__(S, ...) → a new object with type S, a subtype of T

	

	
__nonzero__

	x.__nonzero__() <==> x != 0

	
__or__

	Return the union of two intbitsets as a new set.
(i.e. all elements that are in either intbitsets.)

	
__pyx_vtable__ = <capsule object NULL>

	

	
__rand__

	x.__rand__(y) <==> y&x

	
__reduce__()

	helper for pickle

	
__repr__

	

	
__ror__

	x.__ror__(y) <==> y|x

	
__rsub__

	x.__rsub__(y) <==> y-x

	
__rxor__

	x.__rxor__(y) <==> y^x

	
__safe_for_unpickling__ = True

	

	
__setitem__

	x.__setitem__(i, y) <==> x[i]=y

	
__str__

	

	
__sub__

	Return the difference of two intbitsets as a new set.
(i.e. all elements that are in this intbitset but not the other.)

	
__xor__

	Return the symmetric difference of two sets as a new set.
(i.e. all elements that are in exactly one of the sets.)

	
add()

	Add an element to a set.
This has no effect if the element is already present.

	
clear()

	

	
copy()

	Return a shallow copy of a set.

	
difference()

	Return a new intbitset with elements from the intbitset that are not in the others.

	
difference_update()

	Update the intbitset, removing elements found in others.

	
discard()

	Remove an element from a intbitset if it is a member.
If the element is not a member, do nothing.

	
extract_finite_list()

	Return a finite list of elements sufficient to be passed to intbitset
constructor toghether with the proper value of trailing_bits in order
to reproduce this intbitset. At least up_to integer are looked for when
they are inside the intbitset but not necessarily needed to build the
intbitset

	
fastdump()

	Return a compressed string representation suitable to be saved
somewhere.

	
fastload()

	Load a compressed string representation produced by a previous call
to the fastdump method into the current intbitset. The previous content
will be replaced.

	
get_allocated()

	

	
get_size()

	

	
get_wordbitsize()

	

	
get_wordbytsize()

	

	
intersection()

	Return a new intbitset with elements common to the intbitset and all others.

	
intersection_update()

	Update the intbitset, keeping only elements found in it and all others.

	
is_infinite()

	Return True if the intbitset is infinite. (i.e. trailing_bits=True
was used in the constructor.)

	
isdisjoint()

	Return True if two intbitsets have a null intersection.

	
issubset()

	Report whether another set contains this set.

	
issuperset()

	Report whether this set contains another set.

	
pop()

	Remove and return an arbitrary set element.

	Note: intbitset implementation of .pop() differs from the native set

	implementation by guaranteeing returning always the largest element.

	
remove()

	Remove an element from a set; it must be a member.
If the element is not a member, raise a KeyError.

	
strbits()

	Return a string of 0s and 1s representing the content in memory
of the intbitset.

	
symmetric_difference

	Return the symmetric difference of two sets as a new set.
(i.e. all elements that are in exactly one of the sets.)

	
symmetric_difference_update

	Update an intbitset with the symmetric difference of itself and another.

	
tolist()

	Legacy method to retrieve a list of all the elements inside an
intbitset.

	
union()

	Return a new intbitset with elements from the intbitset and all others.

	
union_update()

	Update the intbitset, adding elements from all others.

	
update()

	Update the intbitset, adding elements from all others.

	
update_with_signs()

	Given a dictionary rhs whose keys are integers, remove all the integers
whose value are less than 0 and add every integer whose value is 0 or more

Indices and tables

	Index

	Module Index

	Search Page

Additional Notes

Notes on how to contribute, legal information and changelog are here for the
interested.

	Contributing

	Changes
	Version 3.0.2.dev

	Version 3.0.1 (released 2022-03-05)

	Version 3.0.0 (released 2022-02-23)

	Version 2.4.1 (released 2020-09-23)

	Version 2.4.0 (released 2019-12-19)

	Version 2.3.0 (released 2016-06-21)

	Version 2.2.1 (released 2015-09-16)

	Version 2.2.0

	Version 2.1.1

	Version 2.1

	Version 2.0

	License
	Authors

	GNU Lesser General Public License

Contributing

See <http://inveniosoftware.org/wiki/Development/Contributing> for now.

Changes

Here you can see the list of key changes between each intbitset release.

Version 3.0.2.dev

(next)

Version 3.0.1 (released 2022-03-05)

	Build wheels for older Linux platforms and correct Windows and macOS versions.

Version 3.0.0 (released 2022-02-23)

Thank you

	Pierre Tardy @tardyp

Bug fixes and updates

	Allow empty generator

	Behave like a set when doing comparison with other types

	Regenerate C code with Cython 0.29.28

	Drop nose in favor of pytest

	Drop support for Python 2.7

	Add support for Python 3.9 and 3.10

	Remove outdated Docker files

	Streamline documentation

	Let the compiler decide optimization and support non-X86 builds.

Version 2.4.1 (released 2020-09-23)

Thank you

	Yoan Blanc

	Steven Esser

Bug fixes and updates

	Allow empty generator

	Regenerate C code with Cython 0.29.21

Version 2.4.0 (released 2019-12-19)

Thank you

	Maximiliano Curia

	Jiri Kuncar

	Andrew Murdy

	Philippe Ombredanne

	Tibo Simko

	Max Teegen

Bug fixes and updates

	Add support Python 3.5, 3.6, 3.7 and 3.8 and run the tests on these versions

	Fix and improve isdisjoint logic and resource usage

	Regenerate C code with Cython 0.29.14

Version 2.3.0 (released 2016-06-21)

Bug fixes

	Fixes implementation of del x[123] operator which was wrongly
defined as __del__ rather than __delitem__. (#40)

	Amends license reST reference from gpl to lgpl to avoid detection
as GPL when scanning the docs for licensing information.

Version 2.2.1 (released 2015-09-16)

Bug fixes

	Reorganizes MANIFEST.in and adds missing files. (#28) (#29)

Version 2.2.0

	Removes coverage because it is not really supported for Cython modules.

	Automatically generates intbitset documentation by using Sphinx automodule
functionality.

	Overall, amends documentation to be compatible with reStructuredText.

	Amends .update() and corresponding methods to accept also non-intbitset
objects, such as lists or sets of integers respecting the set interface.

	Raises TypeError rather than terminating current process with a segmentation
fault when None is used on the left side of an operation with an intbitset.

	Initial release of Docker configuration suitable for local developments.

	No longer returns self in fastload().

	Stops using -march=native for compilation, because it makes the compiler
to optimize the code for only the currently used processor.

Version 2.1.1

	PyBytes_FromStringAndSize() fix in Python 2

Version 2.1

	Adds type checking for &, |, etc. operators. The type of “self” was not
checked.

	Adds support for new union() and isdisjoint() set methods.

	Updates intbitset interface to look like set built-in in Python 2.6.

	Supports initialization of an intbitset from a set.

	No crash when intbitset is on rhs.

	Complete Python 3.x support.

Version 2.0

	Packaged into a standalone git repository.

License

Copyright (C) 2013, 2014, 2015, 2016 CERN and others

SPDX-License-Identifier: LGPL-3.0-or-later

intbitset is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your option)
any later version.

intbitset is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License along
with intbitset; if not, write to the Free Software Foundation, Inc., 59
Temple Place, Suite 330, Boston, MA 02111-1307, USA.

In applying this licence, CERN does not waive the privileges and
immunities granted to it by virtue of its status as an Intergovernmental
Organization or submit itself to any jurisdiction.

The full license text can be found below (GNU Lesser General Public License).

Authors

IntbitSet was originally developed for use in Invenio [http://inveniosoftware.org]
digital library software and is now used by several other projects as a library
that need a fast integer set.

Contact the current maintainer at Philippe Ombredanne
Contact Invenio at info@inveniosoftware.org

Contributors

	Alessio Deiana <alessio.deiana@cern.ch>

	Jiri Kuncar <jiri.kuncar@cern.ch>

	Lars Holm Nielsen <lars.holm.nielsen@cern.ch>

	Marco Neumann <marco@crepererum.net>

	Nikola Yolov <nikola.yolov@cern.ch>

	Philippe Ombredanne <pombredanne@gmail.com>

	Samuele Kaplun <samuele.kaplun@cern.ch>

	Tibor Simko <tibor.simko@cern.ch>

GNU Lesser General Public License

	GNU LESSER GENERAL PUBLIC LICENSE

	Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates

the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

	Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser

General Public License, and the “GNU GPL” refers to version 3 of the GNU
General Public License.

“The Library” refers to a covered work governed by this License,

other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided

by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an

Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the “Linked
Version”.

The “Minimal Corresponding Source” for a Combined Work means the

Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the

object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

	Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License

without being bound by section 3 of the GNU GPL.

	Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a

facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.

	Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from

a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license
document.

	Combined Works.

You may convey a Combined Work under terms of your choice that,

taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.

c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.

	Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.

1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user’s computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.

e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

	Combined Libraries.

You may place library facilities that are a work based on the

Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

	Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions

of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the

Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License “or any later version”
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide

whether future versions of the GNU Lesser General Public License shall
apply, that proxy’s public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

 Python Module Index

 i

 		 	

 		
 i	

 	
 	
 intbitset	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | P
 | R
 | S
 | T
 | U

_

 	
 	__and__ (intbitset.intbitset attribute)

 	__cmp__ (intbitset.intbitset attribute)

 	__contains__ (intbitset.intbitset attribute)

 	__deepcopy__() (intbitset.intbitset method)

 	__delitem__ (intbitset.intbitset attribute)

 	__eq__ (intbitset.intbitset attribute)

 	__ge__ (intbitset.intbitset attribute)

 	__getitem__ (intbitset.intbitset attribute)

 	__gt__ (intbitset.intbitset attribute)

 	__hash__ (intbitset.intbitset attribute)

 	__iadd__ (intbitset.intbitset attribute)

 	__iand__ (intbitset.intbitset attribute)

 	__ior__ (intbitset.intbitset attribute)

 	__isub__ (intbitset.intbitset attribute)

 	__iter__ (intbitset.intbitset attribute)

 	__ixor__ (intbitset.intbitset attribute)

 	__le__ (intbitset.intbitset attribute)

 	
 	__len__ (intbitset.intbitset attribute)

 	__lt__ (intbitset.intbitset attribute)

 	__ne__ (intbitset.intbitset attribute)

 	__new__() (intbitset.intbitset method)

 	__nonzero__ (intbitset.intbitset attribute)

 	__or__ (intbitset.intbitset attribute)

 	__pyx_vtable__ (intbitset.intbitset attribute)

 	__rand__ (intbitset.intbitset attribute)

 	__reduce__() (intbitset.intbitset method)

 	__repr__ (intbitset.intbitset attribute)

 	__ror__ (intbitset.intbitset attribute)

 	__rsub__ (intbitset.intbitset attribute)

 	__rxor__ (intbitset.intbitset attribute)

 	__safe_for_unpickling__ (intbitset.intbitset attribute)

 	__setitem__ (intbitset.intbitset attribute)

 	__str__ (intbitset.intbitset attribute)

 	__sub__ (intbitset.intbitset attribute)

 	__xor__ (intbitset.intbitset attribute)

A

 	
 	add() (intbitset.intbitset method)

C

 	
 	clear() (intbitset.intbitset method)

 	
 	copy() (intbitset.intbitset method)

D

 	
 	difference() (intbitset.intbitset method)

 	
 	difference_update() (intbitset.intbitset method)

 	discard() (intbitset.intbitset method)

E

 	
 	extract_finite_list() (intbitset.intbitset method)

F

 	
 	fastdump() (intbitset.intbitset method)

 	
 	fastload() (intbitset.intbitset method)

G

 	
 	get_allocated() (intbitset.intbitset method)

 	get_size() (intbitset.intbitset method)

 	
 	get_wordbitsize() (intbitset.intbitset method)

 	get_wordbytsize() (intbitset.intbitset method)

I

 	
 	intbitset (class in intbitset)

 	(module)

 	intersection() (intbitset.intbitset method)

 	intersection_update() (intbitset.intbitset method)

 	
 	is_infinite() (intbitset.intbitset method)

 	isdisjoint() (intbitset.intbitset method)

 	issubset() (intbitset.intbitset method)

 	issuperset() (intbitset.intbitset method)

P

 	
 	pop() (intbitset.intbitset method)

R

 	
 	remove() (intbitset.intbitset method)

S

 	
 	strbits() (intbitset.intbitset method)

 	
 	symmetric_difference (intbitset.intbitset attribute)

 	symmetric_difference_update (intbitset.intbitset attribute)

T

 	
 	tolist() (intbitset.intbitset method)

U

 	
 	union() (intbitset.intbitset method)

 	union_update() (intbitset.intbitset method)

 	
 	update() (intbitset.intbitset method)

 	update_with_signs() (intbitset.intbitset method)

 nav.xhtml

 Table of Contents

 		
 intbitset

 		
 Contributing

 		
 Changes

 		
 Version 3.0.2.dev

 		
 Version 3.0.1 (released 2022-03-05)

 		
 Version 3.0.0 (released 2022-02-23)

 		
 Thank you

 		
 Bug fixes and updates

 		
 Version 2.4.1 (released 2020-09-23)

 		
 Thank you

 		
 Bug fixes and updates

 		
 Version 2.4.0 (released 2019-12-19)

 		
 Thank you

 		
 Bug fixes and updates

 		
 Version 2.3.0 (released 2016-06-21)

 		
 Bug fixes

 		
 Version 2.2.1 (released 2015-09-16)

 		
 Bug fixes

 		
 Version 2.2.0

 		
 Version 2.1.1

 		
 Version 2.1

 		
 Version 2.0

 		
 License

 		
 Authors

 		
 Contributors

 		
 GNU Lesser General Public License

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

